

Applying A Formal Language of Command and Control
For Interoperability Between Systems

Dr. Michael R. Hieb
Center of Excellence in C4I
George Mason University

4400 University Drive
Fairfax, VA 22030

USA
001-703-993-3990
mhieb@gmu.edu

Dr. Ulrich Schade
FGAN-FKIE

Neuenahrer Str. 20
Wachtberg, 53343

Germany
0049-228-9435-436

schade@fgan.de

Keywords: Battle Management Language (BML), Command and Control Information Exchange Data Model
(JC3IEDM), Command and Control Simulation Interface Language (CCSIL), Command and Control (C2), Grammar,
Linguistics, Orders, Reports, Robotics

ABSTRACT: Battle Management Language (BML) is being developed as an open standard that unambiguously
specifies Command and Control information, including orders and reports built upon precise representations of
tasks. BML is both a methodology and a language specification, based on doctrine and consistent with Coalition
standards. Recent work has concentrated on leveraging standard data model semantics (particularly the Joint
Consultation, Command and Control Information Exchange Data Model – JC3IDM) for a Simulation Interoperability
Standards Organization (SISO) Coalition BML (C-BML) specification. While current BML work has organized task
representations around the Command and Control Information Exchange Data Model and the 5 Ws (WHO, WHAT,
WHERE, WHEN and WHY), the grammar is implicit rather than explicit.

Development of a formal grammar is necessary for the specification of a complete language. Formalizing BML by
defining its grammar follows the conventions determined by the theory of Linguistics. Initially, it must be determined
which type of grammar is to be used. The Chomsky hierarchy specifies that grammars can be Type 0 (unrestricted
grammars), Type 1 (context-sensitive grammars), Type 2 (context-free grammars) or Type 3 (regular grammars).
While humans sometimes use constructions that may best be described by a context-sensitive grammar (type 1),
automated processing is best supported by a more constrained one (Type 2 or Type 3). Our analysis indicates that a
Type 2 grammar best fits the requirements for a BML.

To specify a BML grammar (our implementation is the C2 Lexical Functional Grammar - C2LG), rules are developed
to determine how to create valid BML sentences that describe military tasks, requests and reports. An analysis of US
and German Army 5-paragraph orders shows that a pure 5W based grammar can neither cope with all of the
expressions needed, nor exclude all sentences that violate our intuition of “correctness”. Therefore, rules for C2LG
sentences require additional and more detailed semantics such that a verb (the 5W’s WHAT) determines a structure
(expressed as a “frame”) for the sentence. This verb frame then references the other Ws and additional terms. Rules
for the concatenation of C2LG sentences in our grammar are guided by NATO STANAG 2014 – “Formats for Orders
and Designations of Timings, Locations and Boundaries”.

In this paper we describe the grammar that formalizes the construction of valid C2LG sentences as well as their
concatenation to form military orders and reports. This is illustrated by an example from an Army Order from a
Multinational Interoperability Program (MIP) Exercise. We also address the use of this BML grammar in automated
systems and describe how the grammar aids C2 to Simulation Interoperability.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 MAY 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Applying A Formal Language of Command and Control For
Interoperability Between Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center of Excellence in C4I George Mason University 4400 University
Drive Fairfax, VA 22030

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
AFCEA-GMU C4I Center Symposium "Critical Issues In C4I" 20-21 May 2008, George Mason
University, Fairfax, Virginia Campus, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. Need for Formalizing Task
Representations in Military Domains

The purpose of this paper is to propose a formalization of
Command and Control by developing a grammar based
upon Linguistic theory. The concept and need for a BML
are well documented [1, 8, 11, 30], however, we also
believe that adding a formal foundation can develop better
interoperability. To date, BML has defined an approach to
resolving ambiguity by leveraging certain existing
standards (such as the Joint Command, Control and
Consultation Data Exchange Information Model – the
JC3IEDM). However, a formal grammar has not been
designed, although the need for it has been identified [1].

To be clear about our intent, we view a BML grammar as
a subset of a more generic task representation language.
We will call this generic language Operational Tasking
Language (OTL). While the semantics of a military task
have unique aspects, we hypothesize that the syntax is
general for a certain class of “Operations” that we define
as “a planned activity involving many people performing
various actions” [32]. This is similar to the notion of
“Action” in the JC3IEDM, where an Action is “An
activity, or the occurrence of an activity, that may utilize
resources and may be focused against an objective.” Our
approach to a BML grammar, therefore, is to base it on
formal Linguistic theory and design it to be applicable to
military, peacekeeping, police and fire operations,
industrial operations and other general uses. While we
realize that the grammar presented here will require
review and revision prior to standardization, we hope that
this proposal will be a positive contribution to the
formalization of BML.

In a general sense, an OTL grammar would be the same as
the BML grammar but the specifics of semantics, lexicon
and production rules would be different for different
domains. Thus an OTL could be specified for disaster
relief using a different set of missions and using a different
semantics than the JC3IEDM.

BML will be useful to the extent that it becomes a
standardized “language” that not only has general
standards for what should be in an order, but also provides
the means for automated systems to distinguish between
missions. Currently a human can specify a mission using a
C2 application, but this application then only has the name
of the mission and some very simple relationships. BML
will add “meaning” to the mission by defining parameters
that will characterize and distinguish the mission.

For completeness, we will briefly introduce the overall
BML concept.

1.1 BML Concept

The definition of BML [3] is:

BML is the unambiguous language used to command
and control forces and equipment conducting military
operations and to provide for situational awareness
and a shared, common operational picture.

The major drawback of using computer-simulated training
is the need for large contingents of support personnel to
act as workstation controllers and provide the interface
between the training unit and the simulation. The group of
workstation controllers is often as large as, or larger than,
the training audience. While this enables training
opportunities at the corps and division echelon, it is still
resource-intensive and lacks the degree of fidelity that
actual combat operations present to the commander and
staff.

Related to this issue of large contingents of workstation
controllers, is the lack of effective means to share
information and directives between the simulation and the
C2 systems. Enabling the C2 systems to not only
exchange information but to also allow them to interact
directly with the simulation will significantly reduce
workstation controller requirements. Good progress has
been made in the area of sharing information, however, in
the area of controlling the simulation directly from the C2
systems significant progress still needs to be made. This is
due to the reliance on unstructured, ambiguous “free text”
within the operational C2 messages that are passed within
the C2 systems.

“Free text” existing in USMTF, JVMF, and other message
formats exists for the benefit of the human. The highly
trained, professional soldier has little problem dealing
with this “free text.” Current automated systems that deal
with “free text” handle it as a single data field and pass
the <character string> on. Understanding of the content of
the <character string> does not exist within the system.

A recent development in simulations is the command
agent or intelligent agent software. This type of
simulation is designed to receive general “mission type”
tasks, and cognitively process the tasks applying a
situational awareness. Using this information and by
applying knowledge of military doctrine, tactics and
techniques it determines its own solution to the problem
and then issues appropriate orders and directives to the
simulated forces. It subsequently monitors the task’s
progress against the planned progress. The intelligent
agent then makes corrections as necessary. This type of
simulation, layered over a more traditional simulation,
can greatly reduce the size of the workstation controller
contingent. Nevertheless, the introduction of “intelligent

agent”, “command entities”, or other Command Decision
Model (CDM) types of software requires unambiguous
structures. Free text messages are not an option. A clear,
unambiguous Battle Management Language is needed to
control these agents.

C2 systems are also evolving. The future systems are
incorporating automated decision aids, such as course of
action development and analysis tools, and mission
rehearsal simulations. While some emerging C2 systems,
automatically fill certain fields when operators are
entering Operations Orders, this is primarily situational
awareness information (e.g. time, location, etc.) and the
command information is still carried in free text form.

A predecessor of BML was the Command and Control
Simulation Interface Language (CCSIL), a highly
structured language for communicating between and
among command entities and small units of virtual
platforms generated by computers for the Distributed
Interactive Simulation (DIS) environment [4]. CCSIL
was successful in providing an unambiguous structure,
but was not consistent with the emerging C2 data
standards and was not maintained as a standard.

1.2 Current Coalition Initiatives

Within SISO, the Coalition BML (C-BML) Study Group
was formed in September 2004 to investigate the concept
of BML. The Study Group conducted a number of face-
to-face and teleconference meetings, involving a
membership of over 100 persons from 11 different
countries. For more details about the work of the study
group see [1]. After the Study Group concluded, a
Product Development Group (PDG) was formed to
standardize the emerging notion of BML.

In parallel to the C-BML Study Group activities, the
NATO RTO Modeling and Simulation Panel established a
12 month Exploratory Team (ET-016) on C-BML [1, 30,
31] in 2005. The team, led by France, endorsed the
requirement for a C-BML which led to a 3-year Technical
Activity Program to be executed by Modeling and
Simulation Group 048. This group has used a BML
implementation, Joint BML, and has investigated its
operation in a Proof of Principle demonstration in
December 2007 [6, 16, 17].

1.3 Need for a Grammar

While a set of tables has been identified in the JC3IEDM
that contains the BML “structure” – the 5Ws, the
argument has been advanced that BML is not needed, as
the JC3IEDM itself is sufficient to represent,

disambiguate and exchange tasking information. This, we
believe, is a shortsighted view. First, although the
JC3IEDM is a very expressive model that allows an
operation to be created, it still needs a standard to
represent orders and reports. Second, the JC3IEDM is for
exchanging facts, but not for communicating meanings
and intentions. This, however, is what a language is for.

To be more precise, the missions listed in the JC3IEDM
(in the “action-task-activity-code” enumerated values) are
merely words with a vague textual description. While the
JC3IEDM is designed to contain all of the information
necessary to plan a mission, there is no detailed
information on the mission itself. Thus, the “attack”
enumeration is never defined using relationships to other
objects in the JC3IEDM. Or, conversely, the entire
context of the mission is described – the weather, the
terrain, the control measures that are associated with the
overall operation and so on – but the actual mission is
never defined beyond a one-word enumeration.

One question that arises is – “If BML is necessary, how
can one use the JC3IEDM now without it?” The answer
is that the current JC3IEDM planning implementations
rely on human commanders to interpret the definition and
assignment of tasks. This is certainly an advancement
over previous ways of creating plans and orders, but it
limits the use of the JC3IEDM by automated systems that
do not have skilled commanders available, such as
simulations and robots. Furthermore, the lack of a
standardized BML (to be used in cooperation with the
JC3IEDM) will eventually constrain the use of the
JC3IEDM as more powerful reasoning engines (or
“intelligent agents”) become available.

A language is used to communicate orders, reports, and
requests. The task of the language’s grammar is to
connect words to communicable expressions. In this
sense, it puts together all the necessary information (about
a mission and its context) in a way that it can be
communicated outside the JC3IEDM to a person, to a
robot and even to an intelligent agent. The 5Ws are a
good start for this purpose.

In that such a language would allow better and more
precise communication, there will be improved
interoperability, given that applications can “learn” to
produce and consume BML expressions.

1.4 Roadmap to Rest of Paper

The remainder of this paper is organized as follows:
Section 2 gives a background on the relevant Linguistic
theory we will apply to BML. This section will discuss
the role a grammar serves a language in general and the
role a grammar should serve BML in particular. Section 3
reviews the current BML specifications to determine the
scope of an appropriate grammar and presents BML as a
context free grammar. Section 4 presents our approach for
such a grammar resulting in an initial BML grammar
appropriate for general task representation. Section 5
gives an example of using the grammar and Section 6
concludes with recommendations for future research.

2. Development of Formal Grammars

In his book “Syntactic Structures” [5], published in 1957,
Noam Chomsky answered the question “What do we
know when we know a language?” by postulating that
what we know is a set of words (the lexicon of this
language) and a set of rules used to generate sequences of
those words (sentences of this language). A sequence of
words is defined as grammatical if the sequence can be
generated by the rules operating on a lexicon.

By this approach, grammaticality does not mean that a
sentence is meaningful and thus conveys a message.
Chomsky gave the example (1) of a grammatical but not
meaningful sequence in order to illustrate this point.

(1) Colorless green ideas sleep furiously.

A formal grammar is defined as an abstract description of
a lexicon and rules. It therefore is a precise description of
a language; thus a grammar is necessary if one intends to
“design” a language like BML that will be processed
automatically.

2.1 Applicability of Formal Methods

Following Chomsky’s approach, in the field of
Linguistics a grammar G is defined as a quadruple, G =
{S, N, Σ, P}, where S is the starting symbol, N is a finite
set of non-terminal symbols, Σ is a finite set of terminal
symbols (the lexicon), and P is a finite set of production
rules. A production rule expands a sequence of symbols
taken from the union of N and Σ to another sequence of
symbols taken from the union of N and Σ. The only
restriction is that the left-hand side of a rule must contain
at least one non-terminal symbol. The language generated
by G, L(G), is the set of all sequences of symbols from Σ
which can be produced by applying the rules of P, starting

from S. Although N, Σ, and P are finite sets, L(G) need
not to be finite because recursion is allowed.

2.2 Types of Grammars

Chomsky defines four types of grammar. They are
ordered within what is designated as the Chomsky
hierarchy. Grammars of type 0 are unrestricted.
Grammars of type 1 have rules of the form αAβ → αγβ
where A is a non-terminal symbol, α, β, and γ are
sequences of terminals and non-terminals, and γ consists
of at least one symbol. Such a rule can be understood as
“A is expanded to γ in the context of α and β”. Thus,
these kinds of grammars are called context sensitive
grammars. Grammars of type 2 have rules of the form A
→ γ where again A is a non-terminal symbol and γ is a
sequence of terminals and non-terminals. Such a rule can
be understood as “A is expanded to γ”. In contrast to type
1 grammars, no context is to be taken into account.
Therefore, these grammars are called context free
grammars. Grammars of type 3 are even more restricted
with respect to their rules. Grammars of type 3 are also
called regular grammars. Grammars of type 0 and type 3
are not used in practical applications and are not
considered further in this paper.

2.3 Syntactic Concepts: Constituency and
Subcategorization

In order to state a formal grammar for BML, we have to
specify the lexicon (the set of terminal symbols Σ), the set
of non-terminal symbols N and the set of production rules
P. In order to point out how the specifics of BML reflect
in our grammar, we have to introduce some terminology
and explain the syntactic concepts constituency and
subcategorization. A complete presentment of the basic
concepts of syntax can be found in “Lectures on
Contemporary Syntactic Theories” by Peter Sells [25,
Chapter 1], a work that also presents and compares some
of the main linguistic syntactic theories. Our BML
grammar is based on the Lexical Functional Grammar
introduced by Kaplan and Bresnan [14] and described
more fully in Bresnan [2].

The set of non-terminal symbols can be divided into a set
of pre-terminals and a set of constituent symbols. A pre-
terminal symbol is a symbol that can be expanded into a
terminal symbol or a sequence of terminal symbols. In
principle, in order to generate “move the unit”, the
production rule “S → move the unit” could be used. Then,
S would be a pre-terminal. However, linguists categorize
words into classes, traditionally, in verbs, nouns,
adjectives, determiners, and so on. This categorization is
reflected by production rules like “DET → the” or “N →

unit” representing that the is a determiner and unit is a
noun. V, DET, N and so on are standard pre-terminals.

Considering these word categories, “move the unit” can
be generated by adding “S → V DET N” to the category
rules. However, syntax is more than providing a grammar
for the generation of sentences. It also has to assign a
meaningful structure to these sentences. Sentences are
structured into constituents. With respect to “move the
unit”, “the unit” is separated from “move”. Both are
constituents of the sentence, and both can be constituents
of other sentences as well, e.g., “the unit” is also a
constituent of “resupply the unit”. Constituents can be
identified as sequences (of words) answering questions.
For example, in the sentence “advance to phase line
Tulip”, “advance” answers the WHAT, and “to phase line
Tulip,” answers the WHERE. The idea of the 5W-grammar
directly stems from constituency. Grammars of type 3,
regular grammars, do not support the construction of
constituents which is the reason why they are not used in
applications, at least not in those applications that rely on
constituency, as a BML does by referring to the 5Ws.

Another important syntactic concept is subcategorization.
Words do not only belong to a category but sometimes
also to a subcategory. This is especially true for verbs.
Verbs define what kind of other constituents are allowed
or even required in order to form a sentence that include
them. For example, “move” allows a prepositional phrase
specifying a destination like “towards the assembly area”.
In contrast, “deny” does not. Subcategorization taps into
semantics, especially into the theory of semantic roles [7,
10, 13, 29], but also bears syntactic aspects. With respect
to our BML grammar, we will argue in subsections 3.2
and 3.3 that we apply subcategorization to our “verbs”. In
combination with the Lexical Functional Grammar’s
principle that syntax is lexically driven we see that in
BML a chosen “verb” spans a frame that has slots to be
filled by constituents. This is further described in 3.2.

3. Design of a BML Grammar

According to the requirements discussed in Section 1,
BML is based on the standard data model JC3IEDM,
since it is concerned with military operations. With
respect to a BML grammar this means that the attributes
and enumerations provided by the JC3IEDM constitute
the set of terminal symbols. For example, the JC3IEDM
table “action-task-activity-code” lists the tasks military
units might execute. Therefore, the values given in this
table will be verbs in BML. This relationship between
BML and the JC3IEDM offers the obvious benefit that
the definitions the JC3IEDM provides for all its attributes
and values can be considered as the meanings of these
attributes and values. Therefore, the JC3IEDM constitutes
the lexical semantics for BML. As it is clear that the
lexicon (the set of terminal symbols) will be provided by
the JC3IEDM (according to Chomsky’s question “What
do we know when we know BML?”) we also have to
define BML’s set of production rules. As a first step, we
will restrict this set by defining the type of grammar for
BML.

3.1 Analysis of BML requirements to determine the
type of Grammar

Determining a grammar for a language means to find the
most restrictive grammar (the higher the type the better)
that generates the language. Natural languages are
supposed to be context-sensitive as proposed by Chomsky
[5]. This means that natural languages are supposed to be
generated by grammars of type 1. However, BML has to
be processed automatically, and the tools (and specific
grammars) developed within the field of computational
linguistics are restricted to deal with context-free
languages, languages generated by grammars of type 2.
Therefore, the question is, what do we lose if we give
BML a type 2 grammar in order to support automatic
processing? (As already has been mentioned Type 3
grammars do not support constituency and therefore
contradict the 5W approach. Thus, we do not take them
into consideration.) Here is the answer from a classical
workbook on computational linguistics: “The
fundamental thing that should be kept in mind is that the
overwhelming majority of the structures of any natural
language can be elegantly and efficiently parsed using
context-free parsing techniques” [9, p.133]. With this in
mind, we choose BML’s grammar to be of type 2.

3.2 Evaluation of 5Ws Concept

In this subsection, we will evaluate the concept of the
5Ws and argue for their evolution into the grammar we
are defining. If viewed as a formal language, the 5W
concept could define a pure 5W-grammar in which the

Ws (WHO, WHAT, WHERE, WHEN and WHY) make up
(together with the starting symbol S) the set of non-
terminal symbols. The production rules of such a
grammar would have the form W → γ where W is one of
the five Ws and γ is a sequence of terminals based on the
JC3IEDM. Thus, the pure 5W-grammar is a type 2
grammar as required, and the Ws would serve as pre-
terminals in this grammar according to the linguistic
terminology as given in subsection 2.3. More details of
the 5W concept and its mapping into JC3IEDM as well as
an elaborated example can be found in [11]. This example
also illustrates one of the problems of the pure 5W-
grammar looking from a linguistic theory viewpoint. In
the example ([11] – Figure 7) the WHO is expanded to an
organization’s name. This organization’s relationship to
the task (the WHAT) is mapped on JC3IEDM’s table
“organization-action-association”. However, this table
only expresses relationships like “gives the order for the
task” or “observes the task”, but not “executes the task”.
The latter relationship is expressed by “action-resource”
in the JC3IEDM. Especially with respect to issuing
orders, BML must both specify the organization that
orders a task (the Tasker) and the organization that is
ordered to execute it (the Taskee). This “split” of the WHO
is something we incorporated in our grammar.

There are other problems as well with the pure 5W-
grammar. As has been already mentioned, the set of all
sequences of terminal symbols that can be generated by
applying the rules of a grammar constitutes this
grammar’s language. These sequences are grammatical
sequences. All other sequences are ungrammatical. An
ideal grammar would restrict the set of sequences such
that a sequence judged as grammatical is a sequence
judged as “correct” by an average person and such that a
sequence judged as ungrammatical is one judged as
“incorrect” by an average person. These judgments are
called intuitions by linguists, and a grammar based on the
5W concept does not meet our intuitions. Let us consider
the examples in (2):

(2a) WHO: 13 (NL) MechBde WHAT: Rest
(2b) WHO: 13 (NL) MechBde WHAT: Support
(2c) WHO: 13 (NL) MechBde
 WHAT: Rest 43 (GE) MechBde
(2d) WHO: 13 (NL) MechBde
 WHAT: Support 43 (GE) MechBde

In all examples above, only WHO and WHAT are given.
(2a) is an order to the 13th (NL) Mechanized Brigade to
rest, and (2d) is an order to support the 43rd (GE)
Mechanized Brigade, respectively. These orders are
correct to our intuitions. However, our intuition judges
(2b) – the order to support as incorrect since there is no
unit that is supported – and a unit would not support itself.

Also, (2c) – the order to rest the 43rd (GE) Mechanized
Brigade – seems incorrect as a unit will “rest” by being
removed from current operations and it is not possible for
a unit to perform this for another unit.

Two different kinds of issues can be identified by the
analysis of these examples. First, there is the “object
problem” which means that a grammar based only on the
5Ws would lack a WHOM. Without a WHOM, task types
(the equivalent of a verb) and objectives (the equivalents
of verb arguments) cannot be separated, and, therefore, it
is necessary to define a huge lexical set of possible
WHATs. Indeed, all allowed combinations of action terms
like “support” or “rescue” with objective terms like “43
(GE) MechBde” must be inserted into the lexicon as
sequences of terminal symbols which might expand the
pre-terminal WHAT. This is obviously not practicable.
Instead, the grammar should separate the verb from the
WHOM-constituent, allowing rules like “WHAT → attack
WHOM” where WHOM is a pre-terminal symbol which can
be expanded to the name of any (hostile) unit present in
the actual scenario.

The second problem stems from the absence of
subcategorization in the pure 5W-grammar. Verbs have to
be subcategorized. That means, “frames” should be
associated to them such that all verbs spanning a certain
frame are members of the same sub-category. A verb’s
frame defines what can be combined with this verb. For
example, in (2) the verb “support” can (and should be)
combined with an argument to represent the organization
that is supported whereas the verb “rest” cannot be
combined with such an argument.

4. A BML Grammar
In this section, we will present a grammar for describing
tasks in the context of an operation for planning and
execution, first presented in [23]. The grammar is
designed to specify tasks so that their description can be
used in automated systems.

4.1 Scope

The grammar presented in this section is restricted with
respect to its scope. The idea behind this is the following.
BML has to be developed step by step. Then, in each step,
lessons learned during the preceding steps can be applied.
We decided to build on the 5Ws concept by developing a
“tasking grammar” in the first step. A tasking grammar is
concerned with formalizing orders. During this first step,
other kinds of command communication, e.g., reports, are
left for future treatment, but cf. Section 6 for references in
the literature that describe how to deal with reports and
requests. We decided in favor of orders for two reasons.

First, the development of production rules (the set P of a
formal grammar) for orders is easier than the development
of production rules for reports. Reports include a larger
richness of linguistic means, e.g., modality terms like
“most probably”, “apparently”, “possibly” and so on,
which are hard to translate into a language written for
automatic processing. Second, with respect to the
coupling of C2 systems and simulation systems, the
processing of orders is of higher priority than the
processing of reports.

The format of orders is defined by the NATO standard
STANG 2014 “Format for Orders and Designation of
Timings, Locations and Boundaries”. An Operational
Order is divided into five sections 1) Situation, 2)
Mission, 3) Execution, 4) Administration and Logistics, 5)
Command and Signal, and the respective annexes. For
conveying the essence of an order to a simulation system,
Section 3 is currently the most applicable given the
behaviors available. Section 3 will “summarize the overall
course of action”, “assign specific tasks to each element
of the task organization”, and “give details of
coordination”. In the following subsections, we will
outline our solution to these aspects.

4.2 Syntax

As has been already said in section 2, a grammar deals
with the syntax of a sentence but not with its semantics.
This is also true for our tasking grammar. Nevertheless,
semantics is an important aspect of a language because in
the end content has to be conveyed. So, we will come
back to semantics in the next subsection, but start with
syntax. In this subsection, we will discuss the production
rules of our tasking grammar.

In order to represent the major parts of an order’s
execution section, our grammar starts with a single rule:

(3) S → CI B* C_Sp* C_T*

This rule means that the BML order consists of four parts,
a command intent (CI) that also is left out during the first
step, but see [12] for how it can be included, basic
expressions to assign tasks to units (B), spatial
coordination expressions (C_Sp), and temporal
coordination expressions (C_T). The stars indicate that
arbitrarily many of the respective expressions can be
stringed together.

In order to avoid the problems we discussed with a
grammar based on the 5Ws, the expressions above are
composed of a terminal symbol and its frame. To be more
precise, a basic expression’s terminal symbol is a tasking
verb, taken from JC3IEDM’s table “action-task-activity-
code”, and its frame. With respect to basic expressions,

the rules, therefore, have the general form given in (4a).
(4b) to (4f) give examples for rules.

(4a) B → Verb Tasker Taskee (Affected|Action) Where

Start-When (End-When) Why Label (Mod)*

(4b) B → advance Tasker Taskee Route-Where
Start-When (End-When) Why Label (Mod)*

(4c) B → assist Tasker Taskee Action At-Where
Start-When (End-When) Why Label (Mod)*

(4d) B → block Tasker Taskee Affected At-Where
Start-When (End-When) Why Label (Mod)*

(4e) B → defend Tasker Taskee Affected At-Where
Start-When (End-When) Why Label (Mod)*

(4f) B → march Tasker Taskee Route-Where
Start-When (End-When) Why Label (Mod)*

Tasker is a non-terminal to be expanded by the name of
the one who gives the order, Taskee is a non-terminal to
be expanded by the name of the unit that is herewith
ordered to execute the task, and Start-When and End-
When are non-terminals to be expanded by temporal
phrases. The rules for temporal phrases to expand Start-
When are given in (5a) and (5b). End-When expands
analogously, but is optional as indicated by the brackets.
Tasker, Taskee, Start-When, and End-When appear in
each basic rule.

(5a) Start-When → start Qualifier1 Point_in_Time
(5b) Start-When → start Qualifier2 Action

In (5a) and (5b), respectively, Point_in_Time expands to a
point in time (a datetime), Action expands to a label which
refers to an action, e.g. another task, Qualifier1 expands to
a value from JC3IEDM’s table “action-task-start-
qualifier-code”, e.g. to nlt (not later than), and Qualifier2
expands to a value from table “action-temporal-
association-category-code”. (5b) refers to a relative point
in time, e.g. at the start of a particular action (whenever
this may occur).

Affected in (4a), is a non-terminal to be expanded by the
name of the one to be affected by the task; in linguistic
terms this is the “patient”. Whether Affected is part of a
rule depends on the tasking verb. It is there if the tasking
verb’s frame requires it as in (4d) and (4e). The same is
true for Action in (4a) – separated from Affected by the
exclusive or “|” – which occurs in (4c) besides its
occurrence in (5b). The same is also true for the Where in
(4a). It is either an At-Where or a Route-Where as
determined by the verb. A Where has to be expanded by
location phrases. These expansions are complex
expansions, especially in the case of Route-Where. E.g.,
Route-Where can be expanded to “from Location to

Location via Location and Location”. Some of the
respective phrase rules are given in (6).

(6a) At-Where → at Location

(6b) Route-Where → Source Destination Path |
Source Path | Destination Path | … | along Route

(6c) Source → from Location

(6d) Destination → to Location

A basic rule ends with the non-terminals Why, Label and
the optional Mod. Why represents a reason why the task
specified by the rule is ordered. At the moment, it could
be expanded by a single tasking verb (a value of “action-
task-activity-code”). It is to be seen whether a more
complex expansion is necessary, e.g., an expansion by a
reduced basic expression. Label is expanded by a unique
identifier. By this identifier the single order represented
by the respective basic expression can referred to in other
expressions, especially in temporal coordinations. The
optional Mod (for modifier) is a wild-card that represents
additional information necessary to describe a particular
task, e.g., formation – to specify a particular formation for
an advance, or speed – to specify the speed of a road
march.

The abstract rule for spatial coordination is (7a); (7b) and
(7c) give examples.

(7a) C_Sp → Control_Feature Tasker (Taskee)

Start-When (End-When) Label
(7b) C_Sp →area of responsibility Tasker Taskee

Start-When (End-When) Label
(7c) C_Sp → hazard area Tasker

Start-When (End-When) Label

The spatial coordination rules correspond to the basic
rules in their form. The key words denote control features,
e.g., lines or areas. These are taken from JC3IEDM’s
table “control-feature-type-category-code”. In this case
the area of responsibility is assigned by a commander to
be used by a subordinate and is considered an area well
defined by natural features or control measures for the
exclusive operation of the subordinate unit’s forces. In
contrast, a hazard area is identified by a unit, but not
assigned to a subordinate unit, hence there is no Taskee
argument.

The abstract rule for temporal coordination is (8a); (8b) is
an example expression, denoting that the action referred
to by “label_3_12” is ordered to start exactly when the
action referred to by “label_3_11” ends.

(8a) C_T → Temporal-Term Qualifier2 Action Action

(8b) start at-the-end-of label_3_12 label_3_11

In temporal coordinations, the non-terminals Action have
to be expanded by different unique identifiers that serve
as labels for basic expressions. Temporal-Term is either
“start” or “end” signifying whether the start or the end of
the first Action is determined by the expression. Qualifier2
is expanded by a relational expression that determines
how the start (or the end) of the first Action is related to
the temporal interval the second Action defines. As has
already been said with respect to (5b), Qualifier2 is taken
from JC3IEDM’s table “action-temporal-association-
category-code”.

Additional examples of BML basic rules and abstract
rules are given in Appendix A for a representative sample
of JC3IEDM tasks and control measures.

4.3 Semantics

As has already been mentioned, the semantics of the
terminals are names denoting units and other objects of
the real world or are taken from JC3IEDM tables. In the
latter case, the JC3IEDM provides semantic definitions
for the terms. The semantic value of the expressions
combined from the terminals is in a very concrete sense
the action a simulation system executes from it.

5. Example of a Mission Order from the
Army Domain

In order to illustrate how the execution part of an order
looks like in BML, we will give an example in this
subsection. The original order was used in the “Integrated
Operational Test and Evaluation” exercise of the
“Multilateral Interoperability Programme (MIP)”,
September 8th to 26th, 2003, in the city of Ede in the
Netherlands.

This exercise order is released from the Multi-National
Division (West) led by Spain and directed – among others
– to the 13th Dutch Mechanized Brigade
(M_BDE13(NL)). The following shows some of its
content:

3. EXECUTION.

[…]

b) Tasks to Manoeuvre Units.

13 NL MECH BDE:

Phase 1A: Fast Tactical March to PL TULIP by or behind
ROUTE DUCK.

Phase 1B: Defense in depth sector EAST, blocking
penetration ALFA.

Phase 1C: Assist the rearward passage of the 12 (SP)
Cavalry Regiment

In BML this would be translated into

march MND-West(SP) M_BDE13(NL)

along DUCK start at Phase1A label_3_11;

defend MND-West(SP) M_BDE13(NL)
at EAST start nlt Phase1B label_3_12;

block MND-West(SP) M_BDE13(NL) MIR320(BL)
at TULIP start nlt Phase1B label_3_13;

assist MND-West(SP) M_BDE13(NL) label_3_57
at EAST start nlt Phase1C label_3_14;

...

In the BML version of the order, the Tasker is the Multi-
National Division West, and the Taskee is the 13th Dutch
Mechanized Brigade. This is repeated in all basic
expressions. Within the WHERE-phrases, the control
features are denoted by their names DUCK, EAST, and
TULIP. The Start-When-phrases use the key word start,
qualifiers from JC3IEDM’s table “action-task-start-
qualifier-code”, namely at and nlt (“not later than”), and
names which denotes points in time (Phase1A, Phase1B,
Phase1C). The last BML sentence (assist) illustrates the
use of a label. The assist task has as its object the
rearward passage of the 12th Spanish Cavalry Regiment.
Note that the Multi-National Division West ordered both
the assist task and the rearward passage task. The
rearward passage task received the label label_3_57,
which is used to refer to it.

In order to represent the order’s “blocking penetration
ALFA” directly, the BML representation of the order has
to also include the order’s section 1a “SITUATION –
Enemy Forces” as well. In the representation of this
section, the anticipated move of the MIR320(BL) could
have been given a label (corresponding to “penetration
ALFA”) that then could be used in other BML sentences.

6. Conclusions

In this paper we have presented a grammar for BML in
general, and a “tasking grammar” deduced from the
general approach, in particular. By defining the basic
phrase in terms of an activity, special coordination and
temporal coordination, we believe we have captured the
essence of operations. Thus we hypothesize that the
grammar is applicable to more general types of operations
and that a more general language for operations is
possible (as with OTL defined in Section 1).

Investigations of using this BML grammar for
interoperability need to have applications which “speak”
according to the grammar. For this purpose, a mapping
from the BML defined by the grammar into the language
of a simulation system will need to be performed. Then,
military orders will need to be translated into the
grammar’s format. After that, the order can be
automatically transferred into the language of the
simulation system, and the execution of simulated units
evaluated. This program has already been successfully
carried out by the NATO MSG-048 demonstration [6,
15], and interoperability among systems from six nations
has been achieved.

The “tasking grammar” discussed in this paper has
focused on “Orders”, but the corresponding grammars for
C2 information types of “Reports” and “Requests” have
also been developed according to the principles given in
Sections 2 and 3 [24, 25, 26]. In addition, an analysis of
how to represent Command Intent in this framework has
worked out [12].

A future direction for a BML grammar is in the area of
semantics. We plan to investigate an assistant system that
checks for semantic consistency after an order has been
written in BML. Some of the checks this assistant system
could make are “Does the Tasker have command and
control authority over the Taskee?”, “Does the Taskee
have the capability and the necessary equipment to
execute the ordered task?”, and “Is the route selected in
the order clear?” These consistent checks will be based on
an ontology for military operations [18, 20, 21].

7. Acknowledgements

Dr. Hieb performed this research under the Center for
Excellence in C4I at George Mason University. Dr.
Schade performed this work at FGAN’s Research
Institute for Communication, Information Processing and
Ergonomics in cooperation with Bundeswehr IT office,
section A5.

8. References

1) Blais, C., Hieb, M.R., Galvin, K., “Coalition Battle

Management Language (C-BML) Study Group
Report,” 05F-SIW-041, Fall Simulation
Interoperability Workshop 2005, Orlando, FL,
September 2005.

2) Bresnan, J., Lexical-Functional Syntax. Malden, MA:
Blackwell, 2001.

3) Carey, S., Kleiner, M., Hieb, M.R. and Brown, R.,
“Standardizing Battle Management Language – A
Vital Move Towards the Army Transformation,”
Paper 01F-SIW-067, Fall Simulation Interoperability
Workshop, 2001.

4) CCSIL Message Content Definitions, Salisbury, M.,
“Command and Control Simulation Interface
Language (CCSIL): Status Update,” Twelfth
Workshop on Standards for the Interoperability of
Defense Simulations, 1995
 (http://ms.ie.org/cfor/diswg9503/diswg9503.pdf)

5) Chomsky, N., Syntactic Structure. The Hague:
Mouton, 1957.

6) de Reus, N., de Krom, R., Mevassvik, O.M., Alstad,
A., Schade, U. & Frey, M., “BML Enabling of
National C2 Systems for Coupling to Simulation”
Spring Simulation Interoperability Workshop, April,
2008.

7) Fillmore, C.J., “The Case for Case,” In: Bach, E. &
Harms, R.T. (Eds.), Universals in Linguistic Theory,
New York: Holt, Rinehart and Winston, 1968.

8) Galvin, K., “Does the United Kingdom need a
Battlespace Management Language?,” Paper 04F-
SIW-051, Fall Simulation Interoperability Workshop,
September 2004.

9) Gazdar, G. & Mellish, C., Natural Language
Processing in PROLOG: An Introduction to
Computational Linguistics. Wokingham, UK:
Addison-Wesley, 1989.

10) Gruber, J.S., Lexical Structures in Syntax and
Semantics. Amsterdam, NL: North Holland, 1976.

11) Hieb, M.R., Tolk, A., Sudnikovich, W.P., and Pullen,
J.M., “Developing Extensible Battle Management
Language to Enable Coalition Interoperability,”
Paper 04E-SIW-064, European Simulation
Interoperability Workshop, June 2004.

12) Hieb, M.R. and Schade, U., “Formalizing Command
Intent Through Development of a Command and
Control Grammar,” Paper presented at the 12th
ICCRTS, June, Newport, RI., 2007.

13) Jackendoff, R.S., Semantic Structures. Cambridge,
MA: MIT Press, 1990.

14) Kaplan, R. & Bresnan, J., “Lexical-Functional
Grammar: A formal system for grammatical
representation,” In: Bresnan, J. (Ed.), The Mental
Representation of Grammatical Relations.
Cambridge, MA: MIT Press, 1982.

15) Mayk, I., Klose, D., Chan, A., Mai, M. & Negaran,
H., “Technical and Operational Design,
Implementation and Execution Results for SINCE
Experimentation 1,” 10th International Command and
Control Research and Technology Symposium,
Tysons Corner, VA, June 2005.

16) Pullen, J., Carey, S., Cordonnier, N., Khimeche, L.,
Schade, U., de Reus, N. Le Grand, N., Mevassvik,
O.M., Galan, S., Gonzales Godoy, S., Powers, M.,
and Galvin, K., “NATO MSG-048 Coalition Battle
Management Initial Demonstration – Lessons
Learned and Way Forward,” Paper 08S-SIW-082
Spring Simulation Interoperability Workshop, April,
2008

17) Pullen, J.M., Levine, S., Hieb, M.R.: “Using Web
Service-Based Command and Control to Support
Coalition Collaboration in C2 and Simulation,” 13th
International Command and Control Research and
Technology Symposium, Providence, RI, June 2008
(to appear).

18) Schade, U., “Towards an Ontology for Army Battle
C2 Systems,” In: Proceedings of the 8th ICCRTS,
June 17-19, 2003. National Defense University,
Washington, DC, 2003.

19) Schade, U., “Automatic Report Processing,”
Proceedings of the 9th International Command and
Control Research and Technology Symposium
(ICCRTS), Command and Control Research Program
(CCRP), Copenhagen, September 2004a.

20) Schade, U., “Towards a higher level of
interoperability: Ontology components for command
and control systems,” In: Proceedings of the NATO
R.T.O. IST-Panel Symposium on Coalition C4ISR
Architectures and Information Exchange
Capabilities. Den Haag, 2004b.

21) Schade, U. and Frey, M., “Beyond Information
Extraction: The Role of Ontology in Military Report
Processing,” In: Buchberger, E. (Ed.), KONVENS
2004: Beiträge zur 7. Konferenz zur Verarbeitung
natürlicher Sprache (Schriftenreihe der
Österreichischen Gesellschaft für Artificial
Intelligence, Band 5). (pp 177-180), Vienna, Austria,
September 2004c.

22) Schade, U., Frey, M. & Becker, S., “From Reports to
Maps,” In: Bunt, H., Geertzen, J. & Thijse, E. (Eds.),
Proceedings of the Sixth International Workshop on
Computational Semantics (IWCS-6) (pp. 407-409),
January 12-14, Tilburg, The Netherlands, 2005.

23) Schade, U. and Hieb, M.R, “Formalizing Battle
Management Language: A Grammar for Specifying
Orders,” Paper 06S-SIW-068 presented at the Spring
Simulation Interoperability Workshop, April,
Huntsville, AL., 2006.

24) Schade, U. and Hieb, M.R, “Development of Formal
Grammars to Support Coalition Command and
Control: A Battle Management Language for
Orders,” Requests, and Reports.” Paper presented at
the 11th ICCRTS, September, Cambridge, UK, 2006b.

25) Schade, U. and Hieb, M.R, “Battle Management
Language: A Grammar for Specifying Reports,”
Paper 07S-SIW-036 presented at the Spring
Simulation Interoperability Workshop, March,
Norfolk, VA, 2007a.

26) Schade, U. and Hieb, M.R, “Improving Planning and
Replanning: Using a Formal Grammar to Automate
Processing of Command and Control Information for
Decision Support”. In The International C2 Journal.
Volume 1, Number 2: 69-90, 2007b.

27) Sells, P., Lectures on Contemporary Syntactic
Theories (= CSLI Lecture Notes 3). Stanford, CA:
CSLI, 1985.

28) Shieber, S.M., An Introduction to Unification-Based
Approaches to Grammar (CSLI Lecture Notes 4).
Stanford, CA: CSLI, 1986.

29) Sowa, J.F., Knowledge Representation: Logical,
Philosophical, and Computational Foundations.
Pacific Grove, CA: Brooks and Cole, 2000.

30) Tolk, A., Galvin, K., Hieb, M. R., and Khimeche, L.,
“Coalition Battle Management Language,” Paper
04F-SIW-103, Simulation Interoperability Standards
Organization, Fall Simulation Interoperability
Workshop, Orlando, FL, September 2004.

31) Tolk, A., Hieb, M. R., Galvin, K., and Khimeche, L.,
“Merging National Battle Management Language
Initiatives for NATO Projects,” Paper 12 in
Proceedings of the RTA/MSG Conference on “M&S
to address NATO’s new and existing Military
Requirements,” RTO-MP-123, Koblenz, Germany,
October 2004.

32) WordNet, English Dictionary,
http://www.wordreference.com, 2006

MICHAEL HIEB is a Research Associate Professor with
the Center of Excellence in C4I at George Mason
University. Dr. Hieb was the Co-Chair of the SISO C-
BML Study Group and also was on the team that
developed the initial BML concept for the US Army. He
received his PhD in Information Technology at George
Mason University in 1996, developing an instructable
Modular Semi-Automated Forces agent. He has
published over 90 papers in the areas of Formal
Languages for Command and Control, Simulation
Interoperability, and Multistrategy Learning.

ULRICH SCHADE is a Senior Scientist at the Research
Institute for Communication, Information Processing and
Ergonomics that is part of FGAN financed by the German
MoD and is a Lecturer at the Institute for Communication
Research and Phonetics, Bonn University. Dr. Schade
received his MA in Mathematics in 1986 and his PhD in
Linguistics in 1990 at Bielefeld University (Germany),
developing a connectionist model for language production
processes. He has written many papers and book articles
in the areas of Language Production, Ontology
Development, and Cognitive Models.

FGAN

Applying A Formal Language of Command and Control
for Interoperability Between Systems

Dr. Michael Hieb

George Mason University

US

mhieb@c4i.gmu.edu

Dr. Ulrich Schade

FGAN-FKIE

GERMANY

schade@fgan.de

Presented to the AFCEA - GMU C4I Center Symposium
on “Critical Issues in C4I”

FGAN

Content

1. The Development of a Formal Grammar

2. Designing a Command and Control
Grammar

3. A Tasking Grammar

4. Related Grammar Developments

5. Implementations

6. Outlook

FGAN

A Linguistic Basis for A Computational C2 Grammar

We have developed a formal language for military
communication (including formal communication of intent)
because not all recipients can understand free text
expressions. Examples are:

• Coalition Forces not speaking English as their native tongue

• Simulated Forces

• Future (smart) Robotic Forces

FGAN

• Formal Languages provide a rigorous framework for
automated processing.

• Formal languages are defined by grammars.

• The military domain provides excellent structure to terms
and actions in a formal language.

• Current Message and Data-based communications do not
go far enough – a grammar is needed to give additional
meaning.

Formal Language

FGAN

Orders and reports
are not “formally” represented in the current data models like
the Joint Coordination, Command and Control Information
Exchange Data Model (JC3IEDM).

• In order to communicate one needs a language.
• Current Data Models are not a language;

especially, they do not give meaning to the tasks.
• A language needs a lexicon (this can be provided by data models).
• It also needs a grammar (to concatenate the lexical items)

and give meaning to the catenation.

The need for a C2 Grammar

FGAN

A formal language is defined by a grammar.
The grammar provides

• a lexicon
in order to determine the words which may be used
as well as their semantics (their meaning);

• a finite set of rules
in order to determine how to concatenate the words
and to give meaning to the catenations.

Grammar

FGAN

Lexical Functional Grammar (LFG) is a theory of grammar – that is,
in general terms, a theory of:

• syntax (how words can be combined together to make larger
phrases, such as sentences)

• morphology (how morphemes - parts of words - can be
combined to make up words),

• semantics (how and why various words and combinations of
words mean what they mean), and

• pragmatics (how expressions are used to transmit information)

We use the Lexical Functional Grammar as the basis for the Formal
Grammar.

Lexical Functional Grammar

FGAN

An Extensive Literature on LFG

http://www.essex.ac.uk/linguistics/LFG/

Bresnan, Joan. 1972.
Theory of complementation in English syntax.
Ph.D. thesis, MIT.

Bresnan, Joan (editor). 1982b.
The Mental Representation of Grammatical Relations.
Cambridge, MA: The MIT Press.

Kaplan, Ronald M. and Annie Zeanen. 2003.
Things are not always equal.
In A. Gelbukh (editor), Computational Linguistics and
Intelligent Text Processing, pp. 205--216. Heidelberg, Springer Verlag.
Lecture Notes in Computer Science, Volume 2588.

Dalrymple, Mary. 2001.
Lexical Functional Grammar, volume 34 of Syntax and
Semantics.
New York: Academic Press.

1148 Entries in
LFG Bibliography!

A Sample

FGAN

Thematic Roles as suggested by
Sowa (2000): Knowledge Representation

Developing a Formal Tasking Grammar

FGAN

We developed our C2 Grammar such that it includes
Command Intent, Tasking and Coordination.

Tasking → Command_Intent OB* Coord_Space*
Coord_Time*

Command Intent → [Expanded Purpose] [Key Tasks]
[End State]

OB is a basic order expression by which tasks are assigned
to units. OB consists of a tasking verb and constituents.

Developing a Command and Control Grammar

FGAN

A BML Tasking Grammar

The production rules for the basic expressions
have the following general form:

B → Verb Tasker Taskee (Affected | Action)
Where Start-When (End-When) Why Label (Mod)*

“Verb” is an action, normally a task;
“Tasker” is a “Who”, the unit which commands the task;
“Taskee” is a “Who”, the unit which executes the task;
“Affected” is a “Who”, the unit which is affected by the task;
“Action” is another action/task affected by the task;

FGAN

A BML Tasking Grammar

The production rules for basic expressions
have the following general form:

B → Verb Tasker Taskee (Affected | Action)
Where Start-When (End-When) Why Label (Mod)*

“Where” is a “location phrase”;
the “When”s are “time phrases”;
“Label” is a label given to the task in order allow it to be
referred in other basic expressions.

FGAN

A BML Tasking Grammar

The production rules for basic expressions
have the following general form:

B → Verb Tasker Taskee (Affected | Action)
Where Start-When (End-When) Why Label (Mod)*

Whether there is “Affected” or “Action” is determined by
the verb. This is indicated by the round brackets. The
Verb also determines the kind of Where (At-Where or
Route-Where) to be used.

FGAN

Why represents a reason for the task – the mission’s purpose.
FM 3-90 [USA, 2001] offers a list of verbs to express the Why, namely divert, enable,
deceive, deny, prevent, open, envelope, surprise, cause, protect, allow, create,
influence, and support. We will label these verbs “purpose-verbs”. From a linguistic
perspective, the verbs can be divided into three groups, namely

1) those that can be used with an argument that is an object,
like “in order to deceive the enemy”,

2) those that cause a state, and
3) those that need another task as argument, like “in order to enable task

DELTA”.

Why → in-order-to PVerb (Who | Task)

Why → in-order-to cause (EndState)

Why → in-order-to enable (Task)

A BML Tasking Grammar

FGAN

A BML Tasking Grammar

Rules for basic expressions (examples)
(“verbs” are taken from JC3IEDM-table “action-task-category-code”)

B → advance Tasker Taskee Route-Where Start-When (End-When) Why Label
B → ambush Tasker Taskee Affected At-Where Start-When (End-When) Why Label
B → assist Tasker Taskee Action At-Where Start-When (End-When) Why Label
B → attack Tasker Taskee Affected Route-Where Start-When (End-When) Why Label
B → block Tasker Taskee Affected At-Where Start-When (End-When) Why Label
B → defend Tasker Taskee (Affect.) Route-Where Start-When (End-When) Why Label

Rules for constituents (examples)
Start-When → start Qualifier1 Point_in_Time
Start-When → start Qualifier2 Action

Qualifier1 → { AFT, ASAP, ASAPNL, ASAPNL, AT, BEF, NLT, NOB }

JC3IEDM-table “action-task-start-qualifier-code”

FGAN

A BML Tasking Grammar

Rules for constituents (examples, continued)

At-Where → at Location

Route-Where → (Source) Destination (Path)
Route-Where → along Route
Route-Where → towards Direction

Source → from Location
Destination → to Location
Path → via Location*

FGAN

BML Reporting Grammar

In the same way, we develop a formal reporting grammar.

We differentiate
• reports about military tasks
• reports about events
• reports about status
• reports about positions

FGAN

BML Reporting Grammar

Rule forms for basic report expressions (RB):

RB → Task-Report Verb Executer (Affected|Action)
Where When (Why) Certainty Label (Mod)*

RB → Event-Report EVerb (Affected|Action)
Where When Certainty Label (Mod)*

RB → Status-Report Hostility Regarding (Identification Status-Value)
Where When Certainty Label (Mod)*

(Position Reports are expressed in the form of Status Reports.)

FGAN

CI → [Expanded Purpose] [Key Tasks] [End State]

The Expanded Purpose is similar to the End State, but expresses
more general aspects of the resulting situation.

The Key Tasks are tasks and conditions that are essential to
accomplishing the mission.

The (desired) End State describes the resulting situation that is
achieved when the mission is accomplished.

Command Intent

FGAN

C2LG is being used in an effort called the “Battle
Management Language” (BML)

BML is being developed as:

• A Standardized XML Schema supported by
 a set of Web Services
 standard semantics

• A Formal Grammar (C2LG)

C2LG Implementation

FGAN

Development of a Company Patrol Order

An Implementation of the Tasking Grammar

FGAN

Patrol Order C2LG Expression

patrol 3Kp_PzGrenBtl332 1Zug_3Kp_PzGrenBtl332
along [base1_PzGrenBtl332, patrolRouteCheck4,
patrolrouteCheck8, controlPoint1, controlPoint3, controlPoint6,
patrolRouteCheck3]
start AFT 291341ZJAN07 end AT 291541ZJAN07
deny
patrol-1170074465084

OB → patrol Tasker Taskee Route-Where
Start-When (End-When) Why Label (Mod)*

FGAN

System Architecture of the Demonstration presented
by NATO MSG-048 at I/ITSEC, Orlando, Nov. 2007

ISIS C2LG

C2LGNORTaC-
C2IS

ISIS translator

NorTAC translator JBML WS plug-in

JBML XML file plug-in

JC3IEDM +JBML WS JBML WS

Data prefill
(OOB, etc.)

JBML

JBML

C2PC
CAPES

BML C2
Interface

C2 Specific Interface

USMTF

JSAF

SCIPIO

SIMBAD

JC3IEDM
Visualizer

ISIS C2LG

C2LGNORTaC-
C2IS

ISIS translator

NorTAC translator JBML WS plug-in

JBML XML file plug-in

JC3IEDM +JBML WS JBML WS

Data prefill
(OOB, etc.)
Data prefill
(OOB, etc.)

JBML

JBML

C2PC
CAPES

BML C2
Interface

C2 Specific Interface

USMTF

JSAF

SCIPIO

SIMBAD

JC3IEDM
Visualizer

FGAN

C2LG Papers – Widely Recognized

April 2006 - On the Conference “Recommended Reading List”
Schade, U. & Hieb, M., “Formalizing Battle Management Language: A Grammar for
Specifying Orders,” 2006Spring Simulation Interoperability Workshop, Huntsville, AL.

June 2006 - Nominated for Best Paper
Schade, U. & Hieb, M., “Development of Formal Grammars to Support Coalition
Command and Control: A Battle Management Language for Orders, Requests, and
Reports”, Proceedings of the 11th International Command and Control Research and
Technology Symposium, Cambridge, UK.

April 2007 - On the Conference “Recommended Reading List”
Schade, U. and Hieb, M.R., “Battle Management Language: A Grammar for Specifying
Reports,” 2007 Spring Simulation Interoperability Workshop.

June 2007
Hieb, M.R., Schade, U. & “Formalizing Command Intent Through Development of a
Command and Control Grammar”, Proceedings of the 12th International Command and
Control Research and Technology Symposium, Newport, RI.

FGAN

Conclusions

We have presented a formal language for conducting
operations through space and time.

The language described is designed explicitly for supporting
automated Command and Control Applications.

The language presented includes mechanisms to support
representing Command Intent.

The grammar this language is based on is being developed
and standardized in NATO and IEEE.

The use of the language not only enables decision support,
but also supports collaboration and agility.

FGAN

Thanks for Your Attention !

Questions and Comments
are appreciated.

FGAN

Elaboration of Themes

Patient < Essence; Ptnt(Process,Physical).
An essential participant that undergoes some structural
change as a result of the event.

Theme < Essence; Thme(Situation,Entity).
An essential participant that may be moved, said, or
experienced, but is not structurally changed.

FGAN

Task Report Expressions are similar to Order Expressions,
besides
• they do not include a Tasker;
• instead of Taskee, there is an Executer;
• they – like all Report Expressions – include Certainty.

• Certainty → RPTFCT (= reported as fact)
• Certainty → RPTPLA (= reported as plausible)
• Certainty → RPTUNC (= reported as uncertain)
• Certainty → IND (= indeterminate)
(Certainty values are taken from JC3IEDM’s table “reporting-data-credibility-code.”)

BML Reporting Grammar

	23. 27_Hieb
	Hieb-slides

